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FLEXURAL--GRAVITATIONAL WAVES FROM MOVING DISTURBANCES 

A. E. Bukatov, L. V. Cherkesov, and A. A. Yaroshenko UDC 532.593:539.3 

We investigate propagating flexural--gravitational waves, generated under the action of 
a load moving over the surface of a floating elastic plate, found in a state of uniform ex- 
tension or compression. Without account of extension or compression stresses, flexural-- 
gravitational propagating waves were considered in [I, 2]. Planar waves were investigated 
in [3, 4] under conditions of longitudinal compression. 

I. Let a thin, isotropic, elastic plate float on the surface of an ideal, incompres- 
sible liquid of finite depth H. The plate and the liquid are not restricted in their hori- 
zontal stresses. The plate is displaced across the surface with a velocity v of the loading 
p = pof(x:, y), xt = x + vt. Consider the effect of a uniform extension on the generated 
flexural--gravitational marine wave, assuming that the liquid motion is a potential flow, and 
that the velocities of the liquid particle motion and of the plate deflection g are low. 

Taking into account uniform extension [5-7] in a coordinate system xt, y, related to the 
moving pressure region, the problem reduces to solving the Laplace equation for the velocity 
potential 

A~: 0, - - H < z < O ,  --oo <x. y <  oo 

with boundary conditions 

v a~ 
a2~ +~+ F ax -ptl(x,y) at O l V ~  - -  Q1Az~ + ~1 v~ ax--- T 

a (~ /az=O at z =  --H, 

( i . i )  

z : 0 ,  ( 1 . 2 )  

where 

D1 = D/pg, Qt = Q/pg, x l  = pth/pg, D = E ~ / [ i 2 ( i  - -  ~ ) ] ,  Pi = Po/Pg, 

V 4 =  a~, A z = O~/ax~+ a~/ay 2, 

p, liquid density; E, h, Pt, and p, respectively, the normal elastic modulus, the width, den- 
sity, and Poisson coefficient of the plate; Q, extension stress; ~ and 9, related by the math- 
ematical condition 9z = v{x at z = 0. From here on the subscript 1 of x~ will be omitted. 

Applying a Fourier transform in horizontal coordinates to solve the problem (i.i), (1.2), 
we obtain, in the case of an axisymmetric load, an integral representation for the plate de- 
flection (raising the plate-liquid surface): 

{i+ 1 ~---- ~ - P l R e  ] (r) M (r) d" (r, R,  ?) dr ; 

~0 

(1.3) 
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j =  ~---- ~ i exPi i rRcos(O_?) ldO,  (1.4) 
2~ k 0 

-~/~ 

where M(r) = rg(l +~trg tanhrH) -~ tanhrH, ko=rvcos e -- T, T = [(i + Qtr 2 + Dxr4)M(r)] I/2 

r = (m 2 + n=) I/2, x = R cos 7, y = R sin y, m = r cos e, n = r sin e, R = (x 2 + y~)~/=, f(r) 
is the Fourier transform of the function f(R). 

Consider three regions of variation of the displacement velocity of the disturbance re- 
gion: 

0 <  ~ < ~ 0 ,  ~o < ~ < V F ~ ,  ~ > V F H :  

The i n t e g r a n d  i n  ( 1 . 4 )  h a s  f o r  0 < v < vo no s i n g u l a r i t i e s  on t h e  p a t h  o f  i n t e g r a t i o n  and ,  
u n d e r  t h e  c o n d i t i o n s  Vo < v < gV~, r~ < r < r2 o r  v > ~ ,  0 < r < r a  h a s  p o l e s  0t  a = 
u a r c c o s  ~o.  H e r e ,  ~o = ( r v ) - t ~ ,  vo = z ( r ~ ) / r o ,  whe re  ro  i s  t h e  u n i q u e  p o s i t i v e  r o o t  of  t h e  
e q u a t i o n  ~ ' o ( r )  = 0 ,  t h e  p r i m e  d e n o t e s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  r ,  and r t , a  a r e  t h e  
r e a l  r o o t s  o f  t h e  e q u a t i o n  ~ o ( r )  = 1. I n  t h i s  c a s e ,  ~ ' o  < 0 f o r  0 < r < ro and Z ' o  > 0 f o r  
ro < r < =. Besides, ~o(0)=]/g-H/v, lim ~=~, ~(0)=~o(ro)=0. In the case rH >> i, 

VO = Fg--~0 [ ( i  + Qlr~ + O1r~)/(~ + Elr0g)] 1/2' ( 1 . 5 )  

where  ro i s  t he  p o s i t i v e  r o o t  o f  t h e  e q u a t i o n  

2• ~ + 3olr ~ -Jr- Qlr ~ -- 2• --  i = O. 

If rH << i, then 

= [(t + + + 

and ro  s a t i s f i e s  t h e  e q u a t i o n  

(1.6) 

ulgHDlr4~ 2Dz~ + Qt--  ~lgH = O. 

S a t i s f y i n g  t h e  c o n d i t i o n  o f  [ 8 ] ,  we c h o o s e  the  p a t h  o f  i n t e g r a t i o n  i n  ( 1 . 4 )  on t h e  c o n -  
t o u r  L, t r a v e r s i n g  on t h e  r e a l  a x i s  f rom 0 = - ' ~ / 2  t o  0 = 3v /2  w i t h  b y p a s s  p o i n t s  0 = 0~ and 
O = 02 i n  t h e  complex  0 p l a n e  w i t h  s m a l l  s e m i c i r c l e s  b e l o w  and a b o v e ,  r e s p e c t i v e l y .  

2.  I f  0 < v < v o ,  a p p l y i n g  t o  ( 1 . 4 )  t h e  s t a t i o n a r y - p h a s e  method  and i n t e g r a t i n g  c o n s e -  
q u e n t l y  ( 1 . 3 )  by p a r t s ,  we o b t a i n  t h a t  ~ h a s  f o r  l a r g e  R o r d e r  n o t  l o w e r  t h a n  0 ( R - ~ ) .  

L e t  vo < v < / ~ .  I n  t h i s  c a s e  we r e p r e s e n t  i n t e g r a l  ( 1 . 3 )  i n  t h e  fo rm of  a sum of  t h r e e  
i n t e g r a l s  o v e r  t h e  i n t e r v a l s  [0 ,  r l ] ,  [ r l ,  r a ] ,  [ r a ,  ~ ] .  S i n c e  t h e  i n t e g r a n d  i n  ( 1 . 4 )  h a s  no 
s i n g u l a r i t i e s  on t h e  s e g m e n t s  [0 ,  r t ] ,  [ r a ,  ~ ] ,  s u b s e q u e n t  a p p l i c a t i o n  of  t h e  s t a t i o n a r y  p h a s e  
method and i n t e g r a t i o n  by p a r t s  shows t h a t  t h e  g i v e n  i n t e g r a l s ,  c o r r e s p o n d i n g  t o  t he  f i r s t  
and t h i r d  s e g m e n t s ,  a r e  o f  o r d e r  0 ( R - ~ ) .  C o n s e q u e n t l y ,  

~ =~pIR e r~-1}(r) M(r)Jd + O (R-I); (2.1) 

(r I 

I y kol exp [irR cos (0 ~ ?)1 dO. ( 2 . 2 )  

L 

Calculating the contour integral (2.2) with account of the signs of the expressions Re[i cos. 
(e -- y)] on the small semicircles and the bypass points e = et,2, and substituting into (2.1) 
the expression obtained for J, we find 

5 
1 

j= l  

r2 ~1 

rl r 1 

(2.3) 
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r~ ~i (2.3) 

r2 

~I~ = R-1/~ J" B 3 cos (rR - n/4) dr; r l < n l < n~ < r~, 
r 1 

B1,2 = ir f  (r) M (r) "~-l (vr V - i  ---~o) -1 ,  ? = ~ - - a r c t g m a x ~ l ( r  ), 

B~ = qr/ (r) M (r) ~ -I, (1)1,2=r('cocosT-T- V-i--'~sin?), 

= ~ [ V ~  ( " r  ~ 'os '  V - -  ~ . ) ] -1 .  ~1 = ~ ; 1  (~ _ j ) , . .  

where  n l , 2  a r e  t h e  r e a l  r o o t s  o f  t h e  e q u a t i o n  T1 = - - t a n  y ,  and  n ~ , ~  a r e  t h e  r e a l  r o o t s  o f  t h e  
e q u a t i o n  ~1 = t a n  y .  

The p h a s e  f u n c t i o n s  r and  #= o f  t h e  i n t e g r a l s  n= and  n~ h a v e  no  s t a t i o n a r y  p o i n t s ,  
w h i l e  ns = 0 ( R - ~ ) .  C o n s e q u e n t l y ,  n= + n~ + ns = 0 ( R - 1 )  �9 

The s t a t i o n a r y  p o i n t s  o f  t h e  p h a s e  f u n c t i o n  r i n  t h e  i n t e r v a l s  nx and  n~ a r e  r o o t s  o f  
t h e  e q u a t i o n s  

tg ? = ~2 (r), X2 = (rz0)' ( i  --  ~)~/~ [l --  t 0 (rzo)']-l. ( 2 . 4 )  

Fo r  vo < v < vx t h i s  e q u a t i o n  ha s  one  y - d e p e n d e n t  r e a l  r o o t  r = a~ i n  t h e  r e g i o n s  o f  r v a r i a -  
t i o n s  u n d e r  c o n s i d e r a t i o n .  H e r e ,  

[. (:'o,>' , (. § -::> ]"' 
"1 = ~. ('~)' % = ~ 0 1 -  (r~o0" 

where r3 is the real root of the equation z"2(r) = O, r3 < ro, Tol = T/r. 

Equation (2.4) has one root for v~ < v < g~if 0 < $ < y~ or 71 < Y < 7. We denote 

this root by a~ in the first case and by a~ in the second. If also v~ < v </gH, but Y2 < Y < Y~, 
then there exist three roots a~ < aa < as. In this case, 

71 = arctg~2(a4), ?~ = arctgT2(u~), al < a4 < ~2 < a5 < a3, 

where a 4 , 5  are the real roots of the equation ~'2(r) = O. We note that a l  = a4 = a2 for 

Y = Y1 and a2 = a5 = as for y = 72. 

Based on the analysis performed of the location of the stationary points of the phase 

functions of the integrals nl and n3, we obtain from (2.3) 

= ~3+0(R-~) for O<lyl<.n,  

if Vo < v < vl. If v~ < v < ~, then 

[~i + o (n -I) for 

~ = I$i+~2+~a +o(n-~ ) for 

[~3 -~- 0 (n "1) fOr 

o < 1 7 1 < 7 ~ ,  

?2<17~<?i, 

v1<l?[<~. 

< 0 .. 

(2.5) 

[ -] H e r e ,  ~ = R-1/2~ (a~) cos Re  1 (a h, ?) -- (-- l) h-~- , ~ = -- fl (r) M (r) /1 (r) = 7 (r) Pl" 

I t  i s  s e e n  t h a t  f o r  v e l o c i t i e s  vo < v < v ,  o f  m o v i n g  d i s t u r b a n c e s  o n l y  one  wave s y s t e m  
~3 i s  g e n e r a t e d ,  b e i n g  damped w i t h  d i s t a n c e  as  1 /R 1 / 2 .  T h e s e  waves  c o v e r  t h e  w h o l e  s u r f a c e  
o f  t h e  p l a t e  ( p l a t e - - l i q u i d  b o u n d a r y ) .  The p a d d l e  d i r e c t i o n  o f  t h e s e  waves  a t  a l a r g e  d i s -  
t a n c e  f rom t h e  x a x i s  i s  d e t e r m i n e d  by  t h e  a n g l e  

7o = arctg[(v/~) 2 -- i| -I/2. 

The distance between neighboring paddle waves on the rays y = 0 and y = ~ equals, respective- 
ly, %1 = 2~/r~, %2 = 2~/r2. The distance from the moving disturbance to the wave paddle, 
following the disturbance, equals Z1 = ~/4ri, and up to the wave paddle, traveling in ad- 

vance, 12 = 3~/4r=. 
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Three wave systems are formed for velocities vz < v < g~ ~z, ~2, and ~3. The wave 
system ~z has the nature of transverse waves, while ~2 has that of longitudinal gravitational 
marine waves [2, 9, I0], deformed due to extensions, elastic, and mass forces on the plate. 

The waves ~s, formed in this case in the region Y2 < [Yi < 7, are due, as in the case vo < 
v < vz, to exclusively elastic plate forces, and their paddle direction is also characterized 

by the angle Yo. 
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Now let v > ~. In this case, rl = 0, and the equation T'=(r) = 0 has only one real 
root ~5. The phase function of the integrals q~ and q3 has for 0 < Y < 72 no stationary 
points, namely real roots of Eq. (2.4). For 72 < Y < y3, where 73 = arctan[v2(gH) -I -- i] -I/2 
there are two stationary points aa and aa, and for ya < T < ~ -- only one ua. Taking this into 
account, we find from (2.3) 

Io (n for 
= I~2 ~- ~a A- O (R -1) for 

0< i?l <72, 

%<l?i<?a, 

where ~a and ~3 are the same as in (2.5). 

Consequently, the disturbances displaced with velocity v > gO'excite two wave systems: 
~2 and ~a. The waves ~s form above the angle 7 < I%=I. Inside it, following the moving dis- 
turbances, waves with an amplitude decaying as I/R ~f2 are generally not generated. The 
waves ~2 are generated inside the angular zone y= < IYI < Y3. 

3. The wave motion generated in the case of a uniformly compressed plate in the pres- 
ence of a compressing stress, satisfying the equation 

Qi < Q2 = %(r4), 

T 4 = [(1 + Dlrl)%(O ~ 4DlrlTo(r)][%(r) + 2%(r)]r -2, 

% = th rH ~ r g  ch -~ rH, To = (1 ~ • th rH) th rH, 

i s  d e s c r i b e d  b y  t h e  s a m e  e q u a t i o n  a s  i n  t h e  c a s e  o f  u n i f o r m  e x t e n s i o n ,  i f  Q~ i s  r e p l a c e d  b y  
- Q x .  

4. For quantitative estimates of the effect of uniform compression and extension on the 
waves generated, we performed numerical calculations in the case of an icy plate of width 0.2, 
0.5, and 1 m for the parameter values [6, Ii]: 

E = 3.10~N/m~ P1 = 870kg/m,3 ~ = 0,34, p = t0akg /m~ H = 10~m. ( 4 . 1 )  

The magnitude of the extension stress varied in the region [0.2pgr and of the compressing 
one -- in the range (0, pgQa). Here Qa for h = 0.2, 0.5, and 1 m is equal to 1.479/D,.DI, 
1.478 Dr and 1.476r respectively. The calculation results are presented in Figs. 1-6, 
where Qa = Q~/Dr Negative Qs values characterize extension, and positive ones -- compres- 
sion. The value Q3 = 0 corresponds to the case of absence of compression and extension 
stresses [I, 2]. The Q3-dependenee of vo and vx (m/see) is illustrated in Fig. i. The solid 
(vo) and dashed (vx) lines correspond, from above downward, to the plate thicknesses of i, 
0.5, and 0.2 m. It is seen that the values of the critical velocities vo and v:, near which 
the nature of the wave motion varies slowly, increase with increasing extension stresses, and 
decrease with increasing compression stresses. These changes may well be significant. For 
example, for plate thickness 1 m the values of vo and vx equal, respectively, 18.3 and 26.2 
m/see at Q3 = -1.476, 14.6, and 22.5 m/sec for Q3 = 0, 7.9, and ii.0 m/sec at Q3 = 1.476. 
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The phase contours of the waves formed are illustrated in Figs. 2-4 for h = 0.2 m for 
disturbance displacement velocities equal to i0 (Fig. 2), 20 (Fig. 3), and 35 m/sec (Fig. 4) 
of the regions Vo <v<vl, vl <v<~, and v> g~-H, respectively. 

The solid (Q3 = 0.5) and dashed (Q3 = -i) curves in Fig. 2 are node lines of Es waves. 
The node lines of E3, E2, and El waves in the case Q~ = 1 correspond to the thin solid, 
boldface solid, and dash-dotted curves on Figs. 3 and 4. Qualitatively, the same wave pat- 
terns are also formed in the absence of compression and extension stresses (Q3 = 0). How- 
ever, the regions of velocity variation v, for which they occur, vary with Q. The angular 
zone values where the E:, ~2, and E3 waves are generated also change. The effect of compres- 
sion and extension stresses on the value of the angle Yo is characterized by the dependences 
shown in Fig. 5a, and on the values of the angles Y1, Y2, and Y3 in Fig. 5b. The curve order 
from up downward in Fig. 5a corresponds to disturbance displacement velocities equal to i0, 
ii, 15, 20, and 35 m/sec. The dashed (Q3 = -1.9), solid (Q3 = 0), and dash-dotted (Q3 = I) 
curves 1-3 correspond on Fig. 5b to the angles y1, y=, and Y3. The circles mark Y~,2 
values corresponding to the velocity vl. We note in this case that Y1 = Y3 = ~/2 for v = ~, 

Yo = ~/2 for v = vo. 

It follows from the curves given that the angle Yo is larger for extension than for com- 
pression, even for Q3 = 0. The value of the angle y3 is practically independent of variations 
in Q3. As to the angles y: and y=, they increase with extension stress, and decrease with in- 
creasing compression stress. Consequently, for v > g~ a large compression (extension) stress 
corresponds to a small (large) angular zone following the moving disturbances, in which the 
wave amplitude has an order not less than R -I. The region Y3 < IYI < Y2, where E2 waves are 
generated simultaneously with Es, decreases for increasing extension stress, and broadens 

with increasing compression stress. 

If vo < v < g/~, an increase in extension (compression) stress leads to a broadening 
(narrowing) of the formation region of transverse waves E:. In this case, the region y: < 
IYI < y2, in which are formed transverse E~, longitudinal E2, and flexural E3 waves, decreases 
with increasing extension stress, and increases with increasing compression stress. 

With varying Q3 the distance I along the x axis from the disturbance region to the first 
paddle ahead of the traveling wave ~3 and behind the traveling wave E~ also changes. For h= 
0.2 m this is illustrated, respectively, by the dashed and solid lines in Fig. 6. Ordered 
from top downward, the solid lines correspond to disturbance displacement velocities 20, 15, 
and I0 m/sec, and the dashed ones -- to velocities of i0, 20, and 35 m/sec. The Ivalues 
marked by triangles and circles characterize the distances at which the quantity Q3 corre- 
sponds to the velocities v~ and vo. It is seen that with increasing compressing stress the 
distance from the first wave paddle ~ to the disturbance region increases, while with in- 
creasing extension stress it decreases. The distance from the first wave paddle E~ to the 
disturbance region has an opposite dependence on the change in Q. 
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CONTACT INTERACTION BETWEEN A CYLINDRICAL PANEL AND A HALF-PLANE 

�9 E. M. Kim and V. P. Ol'shanskii UDC 539.3 

FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION 

Let an external load be applied to a shell and directed parallel to the edge of a semi- 
infinite plate, as is shown in Fig. i. The bodies are joined in sections whose width ho is 
small compared to the length 21, so that the contact domain can be considered a straight-line 
segment {z ~ [--l, l],y ~ 0}. We take the density of the tangential contact forces T(x) as the 
principal unknown. We set the normal component equal to zero. This is justified physically 
by the fact that the bending stiffness Of a thin-walled panel is considerably less than the 
tension--compression stiffness. An analogous simplification is used in [i] in analyzing the 
contact interaction between shells and is, in mathematical respects, that we have one singu- 
lar integral equation in place of a system of two. To obtain it we take the equality of the 
strains (uo)'x in the plate and u'x in the shell as the contact condition. Using the Green's 
function from [i, 2], we have 

l 

S ~ (~) r (x - ~) d~ = I (~), (1) 
-( 

,,TL 

Fig. 1 

Kharkov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnieheskoi Fiziki, No. 2, 
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